Distribution of electron density in the methyltrioxorhenium molecule

I. S. Ionova* and V. L. Roubaijlo

N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 ul. Kosygina, 117977 Moscow, Russian Federation. Fax: 007 (095) 939 7382

The effective charges on atoms in the methyltrioxorhenium molecule were determined on the basis of the correlation between the chemical shift of ¹⁷O and the energy of electron transitions in absorption spectra.

Key words: methyltrioxorhenium, electronic structure

The previously performed calculations of the effective charges q_0 on oxygen atoms in tetrahedral hydroxy anions with closed shells ($\mathrm{MO_4}^{2^-}$) showed that q_0 in anions of the 5d-period are higher than those in the corresponding anions of the 4d-period and decrease along the period¹⁻³ (Table 1).

At the same time, the chemical shifts of ^{17}O measured relative to H_2O in many hydroxy anions depend linearly on the lowest energy E of the electron transition in the absorption spectra. The parameters of particles of other symmetry types $(Cr_2O_7^{2-}, CrO_2Cl_2)$ (Table 2, Fig. 1) also obey this dependence. Using the known

Table 1. Effective charges (in electron charge units) on oxygen atoms (by the data of Refs. 1-3)

Compound	q_0	
MoO ₄ 2-	-0.56	
WO_4^{2-}	-0.66	
TcO ₄ 2-	-0.46	
ReO ₄	-0.55	
OsO ₄	-0.37	

Table 2. Chemical shifts of oxygen atoms and lowest wave numbers v_{ct} in absorption spectra

Compound	$\delta \pm 0.1\%/\text{ppm}$	v _{et} /em ⁻¹	
Na ₃ VO ₄	-571	36900	
Na ₂ CrO ₄	-835	26800	
K ₂ MoO ₄	-540	44000	
K ₂ WO ₄	-420	50300	
$NaMnO_4$	-1219	18300	
NaTcO ₄	-749	34000	
NaReO ₄	-569	43500	
CH ₃ ReO ₃	-829	29850	
CpReO ₃	-646	- Automore	
RuOa	-1119	26400	
OsO ₄	-796	33500	

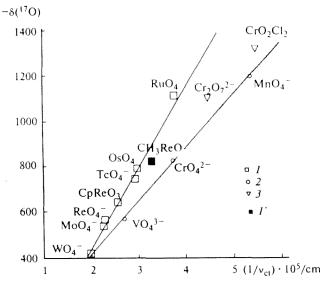


Fig. 1. Dependence of the chemical shift of $^{17}\mathrm{O}$ nuclei in hydroxy anions on $1/v_{\mathrm{ct}} \cdot 10^5$ (cm) y = -a + bx (a = -276.7, b = 355.8, correlation coefficient r = 0.987, mean square deviation 37.5): I, I', 2, particles with symmetry C_{3v} ; 3, particles with different symmetry.

value of $\delta(^{17}\mathrm{O})$ for ReO₃CH₃ (see Ref. 5) and the energies of charge-transfer bands E_{ct} proportional to the corresponding wave numbers v_{ct} (see Ref. 6), we estimated the values of the effective charges on the oxygen and metal atoms on the basis of the q_0 – $\delta(^{17}\mathrm{O})^{1,2}$ and $1/v_{\mathrm{ct}}$ – $\delta(^{17}\mathrm{O})$) dependences.

The dependence between $\delta(^{17}O)$ and q_0 is shown in Fig. 2. It can be found from this dependence that

$$q_0(\text{CH}_3\text{ReO}_3) = -0.362$$
 and $q_0(\text{CpReO}_3) = -0.50$

i.e., the oxygen atoms in CH₃ReO₃ are electron-deficient compared to those in CpReO₃ and ReO₄. The charge on the rhenium atom in perrhenate is equal to +1.2. Thus, the CH₃ group withdraws less electron

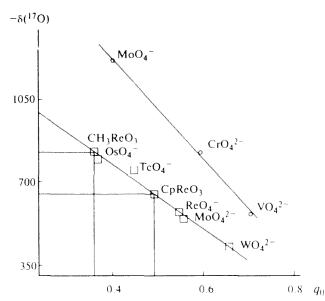


Fig. 2. Dependence of the chemical shift of 17 O nuclei in hydroxy anions on the charge $(q_0, \text{ charge units})$ y = a + bx determined by the least-squares method (a = -1375.24, b = -0.996, mean square deviation 20.2).

density than the O atom. The effective charges on the CH_3 group can be estimated as

$$q_{\text{CH}_3} = -0.362(9.84/13.614) = -0.27,$$

where $I(CH_3) = 9.84$ eV and I(O) = 13.614 eV are the ionization energies of the CH₃ group and the oxygen atom, respectively. Thus, the charges in CH₃ReO₃ are distributed as follows:

Experimental

Electronic absorption spectra were recorded on a Beckman DU-8 spectrophotometer in MeOH in cells with a 1-cm optical length. The solvent was used after dehydration.

Methyl(trioxo)rhenium was synthesized by the procedure described in Ref. 5 and characterized by ¹⁷O and ¹H NMR (Bruker AMX 400) and 1R Fourier spectroscopy (Bruker 1FS 45).

This work was financially supported by the Russian Foundation for Basic Research (Project No. 93-03-4614).

References

- G. V. Ionova, Ph. D. (Chem.) Thesis, IONKh AN SSSR, Moscow, 1965 (in Russian).
- A. A. Kiseleva, Ph. D. (Chem.) Thesis, IFKh AN SSSR, Moscow, 1989 (in Russian).
- I. A. Topol', Teor. Eksp. Khim., 1985, 23, 456 [Theor. Exp. Chem., 1985, 23 (Engl. Transl.)].
- B. N. Figges, R. G. Kidd, and R. S. Nyholm, *Proc. Royal Soc.*, 1962, A269, 469.
- 5. W. Hermann, J. G. Kuchler, and G. Weichselboumer, J. Organomet. Chem., 1989, 372, 351.
- S. Ionova and V. L. Rubaijlo, Izv. Akad. Nauk, Ser. Khim., 1996, 1563 [Russ. Chem. Bull., 1996, 45 (Engl. Transl.)].

Received January 22, 1996; in revised form March 4, 1996